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We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-
mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external
magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which
can possibly be observed in a dedicated experiment, is predicted.
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The quantum Hall effect �QHE� �Refs. 1 and 2� is a re-
markable phenomenon remaining in the focus of experimen-
tal and theoretical research over the last three decades. The
study of the QHE led to development of new fundamental
physical concepts.3,4 At the same time the QHE plays a cru-
cial role in metrology and determination of fundamental
constants.5

In the QHE, in sharp contrast to the prediction of classical
electrodynamics, the conductivity of the two-dimensional
electron system in a strong transverse magnetic field at low
temperature has plateaus as a function of the magnetic field
strength. At these plateaus the conductivity is given by inte-
ger or specific fractional multiples of RK

−1, where RK is a
universal parameter known as the von Klitzing constant. A
simple quantum-mechanical consideration of the noninteract-
ing electron gas relates it to the fine-structure constant6

RK
−1 = 2� . �1�

A remarkable property of a two-dimensional electron system
in magnetic field is that this naive result is stable against all
kinds of perturbations which do not result in a qualitative
change in the Landau spectrum. This has been proven first in
Ref. 7 �see also Ref. 8� by an elegant use of gauge invari-
ance. Later, a relation of the Hall conductivity to the topo-
logical invariants of the adiabatic ground-state space has
been established.9–11 Much work has been done to find a
possible deviation from Eq. �1� �see, e.g., Ref. 12�. However,
leaving aside finite temperature and edge effects, no univer-
sal corrections have been found and Eq. �1� is currently con-
sidered to be exact.5 This would distinguish the quantum
Hall conductance as one of a very few characteristics of
many-particle interacting quantum systems exactly predicted
by theory. On the other hand the exact relation �1� would
allow for determination of the fine structure constant with a
priori zero theoretical uncertainty.

The purpose of this Brief Report is to show that in quan-
tum electrodynamics �QED� quantum field effects lead to
deviation from the quantum-mechanical prediction for the
Hall conductance. The physics behind this phenomenon is in
a modification of the electromagnetic coupling of electrons
due to vacuum polarization by highly virtual electron-
positron pairs in a strong magnetic field, which can roughly
be described as radiative antiscreening of the electric charge
at large distance. The main result of this Brief Report, which

is the leading-order QED correction to Eq. �1�, is given by
Eq. �17�.

Following Ref. 7 we consider the Hall current I around an
asymptotically large loop of a two-dimensional ribbon sub-
jected to a time-independent locally homogeneous magnetic
field B and an electric field E. The spatial vectors I, B, and E
are orthogonal to each other and the magnetic field is normal
to the ribbon surface �see Fig. 1�. For further analysis it is
convenient to introduce an auxiliary magnetic flux � through
the loop. The Hall conductivity RH

−1 is defined by the equa-
tion I=RH

−1V, where V is the potential drop across the ribbon.
In QHE it is given by RH

−1=�RK
−1, where the filling factor �

can be either integer1 or fractional.2 We focus on the integer
QHE since the case of fractional � can be understood as the
integer QHE for fractionally charged quasiparticles.3

The QHE is a collective phenomena in condensed matter
and the analysis of quantum field effects in such a system is
not straightforward. To get a systematic description of inter-
acting electrons in QED we use the nonrelativistic effective
theory approach.13 Let us briefly outline it. The core idea of
the method is to disentangle the contributions of excitations
corresponding to widely separated dynamical scales. In the
absence of interaction with the medium, the dynamics of an
electron in a magnetic field B is characterized by three
scales: the hard scale of the electron mass m, the soft scale of
the cyclotron momentum �eB, and the ultrasoft scale of the
cyclotron energy eB /m. If the parameter

B

E

IΦ

FIG. 1. Geometry of the Hall current. The size of the loop is
much larger than any other scale of the problem and the magnetic
field is homogeneous near the surface of the ribbon.
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� =
eB

m2 �2�

is small, the above scales are widely separated and the
effective-field theory method is applicable. Interaction with
the medium results in appearance of additional soft and ul-
trasoft scales. However, the specific nature of these scales is
not important until the above hierarchy is violated. The elec-
trons in the ground state of the Landau spectrum are nonrel-
ativistic and have soft momentum and ultrasoft energy. The
hard and soft excitations could only appear as virtual states
and the dynamics of the real electrons is determined by an
effective Schrödinger equation and the multipole interaction
with the ultrasoft photons.14 The corresponding effective
Hamiltonian is of the following form:

H = e�A0 −
D2

2m�
+ �H , �3�

where A0 is the potential of the electric field E, D is the
spatial covariant derivative, e� �m�� stands for the effective
charge �mass� of the electron, and �H represents the radia-
tive and relativistic corrections as well as the interaction with
the medium. The entire contribution of the hard and soft
excitations is encoded in the parameters of the Hamiltonian,
which can be systematically computed in QED as a series in
� and � or, in general, a ratio of the scales present in the
problem. The quantum Hall conductivity is known to be in-
dependent of m� and �H.7,9 The ultrasoft contribution repre-
sents the effect of retardation and cannot be reduced to a
variation of the Hamiltonian. Nevertheless, the arguments of
Refs. 7 and 9 hold and the ultrasoft contribution to RH

−1 van-
ishes, which can be checked by an explicit calculation �see,
e.g., Ref. 15�.

Thus the only source of the corrections to Eq. �1� is elec-
tron coupling to the external fields. This coupling is modified
by vacuum polarization through creation of hard virtual
electron-positron pairs. In the absence of a magnetic field
this effect is reabsorbed by the on-shell renormalization of
the physical electron charge e. For a nonvanishing magnetic
field the vacuum polarization cannot be “renormalized out”
and the effective charge does differ from e. Since the mag-
netic field B explicitly breaks down the Lorentz invariance,
the effective charges are in general different for different
external fields. For the calculation of the Hall conductivity
we need besides e� another effective charge e�, which param-
etrizes the coupling of the electrons to the vector potential of
the auxiliary magnetic flux in the covariant derivative D=�
−ie�A�+¯.

The effective charges are determined by the behavior of
the vacuum polarization tensor ����q� at small four-
momentum transfer q. By using the integral representation of
Refs. 16 and 17 it is straightforward to derive the leading
variation of the polarization tensor due to the magnetic field
in the limit q→0, which reads

�����q� = −
�

�
�2 1

45
�2�g��q2 − q�q��

− 7�g��q2 − q�q��� + 4�g��q2 − q�q���� . �4�

The correction to the polarization tensor is transverse be-

cause of the gauge invariance. At the same time the Lorentz
invariance is broken and Eq. �4� includes the transverse pro-
jectors in the “parallel” �q0 ,q�� and “orthogonal” �q�� two-
dimensional subspaces of the whole four-dimensional
Minkowskian momentum space �q0 ,q�. Here q� and q� com-
ponents correspond to the spatial momentum parallel and
orthogonal to the magnetic field, respectively.

Let us now consider the effective charge e�, which param-
etrizes the interaction of the electron to the homogeneous
electric field. The first two terms in square brackets of Eq.
�4� result in a modification of the static Coulomb potential
between two pointlike charges,18

V�r� =
�

r
�1 +

�

�
�2� 2

45
−

7

90
sin2 		
 , �5�

where 	 is the angle between B and r, i.e., the Coulomb
interaction in the presence of the magnetic field becomes
anisotropic. Taking an infinite uniformly charged plane as a
source of E and using potential �4� for the electron interac-
tion with the charge density, one gets the following result:

e� = e�1 +
11

180

�

�
�2
 . �6�

Thus the vacuum polarization in the magnetic field enhances
the electron coupling to the electric field which generates the
Hall current. Graphically the effect is represented by the
Feynman diagrams in Fig. 2.

Similar effect occurs in the case of the effective charge e�
although the perturbative coefficient is different. The vector
potential of the auxiliary magnetic flux has only A� compo-
nent and its momentum has only q� component. Thus only
the first term of Eq. �4� contributes to the corresponding
coupling and one gets e�=e�1+��2 / �45���. Note that e� is
exactly the parameter which appears in the quantization con-
dition for the auxiliary magnetic flux through the contour of
the Hall current. Hence in the presence of the magnetic field
B the “effective” flux quantum becomes �0�=2� /e� or

��0��
−1 =

e

2�
�1 +

1

45

�

�
�2
 . �7�

Now we are in a position to derive the correction to the
quantum-mechanical result for the Hall conductivity. In gen-

× ×

(a) (b)

δe

FIG. 2. Feynman diagrams �a� in full QED and �b� in the non-
relativistic effective theory representing the antiscreening of the
electric charge in the external magnetic field. The arrow lines cor-
respond to the free-electron propagators. The bold arrow lines cor-
respond to the electron propagating in the external magnetic field.
The dashed lines represent the electric potential, the crossed wavy
lines represent the external magnetic field, and �e=e�−e.
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eral, the Hall current is given by the integral of the current
density over the ribbon cross section,

I =� �jI�r� + �jI�r��drEdrB, �8�

where r= �rI ,rE ,rB� is a vector with the components parallel
to I, E, and B, respectively. A single electron contribution to
the unperturbed current density can be written as follows:

jI�r� = − i
e

m

��r�DI
�r� , �9�

where 
�r� is the eigenfunction of the Hamiltonian �3�. In
QED the perturbation to the current density due to the
vacuum polarization �4� reads

�jI�r� =� �−
1

2

��II�q�
q2 
 j̄I�q�eirq dq

�2��3 , �10�

where j̄I�q� is the Fourier transform of jI�r�. Integrating the
exponent in representation �10� over drEdrB gives the prod-
uct of delta functions ��qE���qB�. Hence, the function
��II�q� /q2 under the integral over dq can be replaced with
��II�qI� /qI

2 and is reduced to a constant −2��2 / �15�� up to
longitudinal terms, which vanish because of the current con-
servation. Thus one has

� �jI�r�drEdrB =
1

15

�

�
�2� jI�r�drEdrB �11�

and the expression for the Hall current takes the following
form:

I = �1 +
1

15

�

�
�2	� jI�r�drEdrB. �12�

The integral in Eq. �12� can be expressed through the deriva-
tive of the electron energy E in �, i.e.,

� jI�r�drEdrB = −
e

e�

dE
d�

�13�

�see, e.g., Ref. 12�. Thus our final expression for the Hall
current reads

I = − C
dEt

d�
, �14�

where Et is the total energy of the electrons contributing to
the current and

C = 1 +
2

45

�

�
�2 �15�

is the matching coefficient. As has been shown in Ref. 7, the
flux � acts as a quantum pump: changing it by n quanta �0�
results in a net transfer of n� electrons across the ribbon,
which corresponds to an energy variation of n�e�V. Thus for
the Hall conductivity one gets

RH
−1 = �

Ce�

�0�
. �16�

Note that this result does not depend on the global geometry
of the Hall current. For example, in the annular geometry
considered in Ref. 8 the auxiliary flux is parallel to the mag-
netic field B and is quantized differently. The difference,
however, is compensated by the variation of the matching
coefficient since Eq. �12� does not change. Putting together
Eqs. �6�, �7�, �15�, and �16� we obtain the final expression for
the von Klitzing constant,

RK
−1 = 2��1 +

23

180

�

�
�2
 �17�

or in physical units

RK
−1 =

e2

2��
�1 +

23

180

�

�
� �eB

c2m2	2
 . �18�

We would like to emphasize that the characteristic distance
of the vacuum fluctuations resulting in the correction to the
Hall conductivity is given by the electron Compton wave-
length on the order of 10−12 m, which is far smaller than the
actual thickness of the layer, where the electrons are local-
ized, on the order of 10−8 m. Thus the correction to RK is
due to an intrinsically three-dimensional effect, which is not
prohibited by the topological and gauge invariance argu-
ments developed in two dimensions.

The correction term in Eq. �18� can be rewritten as fol-
lows:

23

180

�

�
� B

B0
	2

, �19�

where B0=c2m2 / ��e��4.41�109 T. A typical value of the
magnetic field in current experiments corresponds to B /B0

10−8. Thus numerically Eq. �19� amounts to a tiny 10−20

correction. This is well beyond the available accuracy of the
von Klitzing constant determination, which is about 1 part
per 108.5 However, this accuracy is limited mainly by the
absence of an independent standard of resistance. Studying
the variation of RK with B does not have this restriction and
can be performed by means of a different experimental
method and with a presumably significantly higher accuracy.
A renowned example of a similar phenomenon is given by
the system of neutral KS and KL mesons, where the absolute
experimental accuracy for the mass difference is about 12
orders of magnitude higher than for the average mass.19 Thus
it is an open question whether the evidence of Eq. �17� can
be obtained with the available experimental facilities.

On the other hand, there is no fundamental reason which
rules out the possibility of the observation of the phenom-
enon in a dedicated future experiment. A possible scheme
of such an experiment involves two identical samples as-
sembled in a single electric circuit and exposed to different
magnetic fields. The effect becomes observable when the
Hall voltage difference between the samples due the correc-
tion term in Eq. �17� reaches the resolution of the measuring
device, e.g., based on the Josephson frequency-voltage con-
version. Note that the voltage difference can be increased by

BRIEF REPORTS PHYSICAL REVIEW B 79, 113303 �2009�

113303-3



orders of magnitude if one uses stronger magnetic field and
larger values of the Hall current. We would like to emphasize
that the quantum Hall conductance is topologically protected
against any other type of corrections including the finite-size
effects,7,8 which otherwise would mask the tiny effect of
vacuum polarization.

In summary, the leading QED correction to the quantum-
mechanical result for the Hall conductivity is derived. It re-
sults in a weak dependence of the universal von Klitzing

constant on the magnetic field strength. This remarkable and
unexpected manifestation of a fine nonlinear quantum field
effect in a collective phenomenon in condensed matter merits
a dedicated experimental analysis.
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